

Einfach. Sicher. Upat

DECLARATION OF PERFORMANCE

DoP: 0042

for Upat Express Anchor IMC (Metal anchors for use in concrete (heavy-duty type)) - EN

- 1. Unique identification code of the product-type: **DoP: 0042**
- 2. Intended use/es: Post-installed fastening in uncracked concrete, see appendix, especially Annexes B 1 to B 3
- 3. Manufacturer: Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Germany
- 4. Authorised representative: --
- 5. System/s of AVCP: 1
- 6. European Assessment Document: EAD 330232-00-0601

European Technical Assessment: ETA-10/0169; 2017-08-22

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

- Characteristic resistance for tension and shear loads in concrete: See appendix, especially Annexes C 1 to C 2
- Edge distances and spacing: See appendix, especially Annexes C 1 to C 2
- Displacements under tension an shear loads: See appendix, especially Annex C 3 •

Safety in case of fire (BWR 2)

- Reaction to fire: Anchorages satisfy requirements for Class A 1
- **Resistance to fire: NPD**

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

1.V. A. Dun

Tumlingen, 2017-08-29

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

i.V. W. Kgelal

Specific Part

1 Technical description of the product

The Upat Express Anchor IMC is an anchor made of zinc plated, hot-dip galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

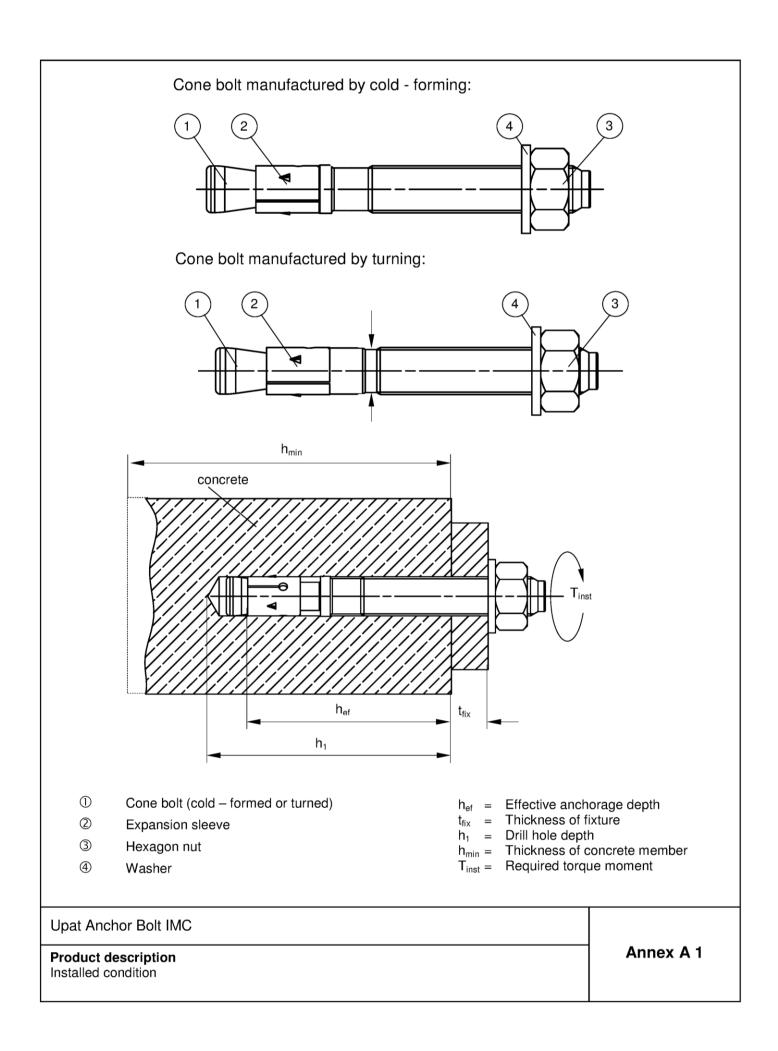
The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

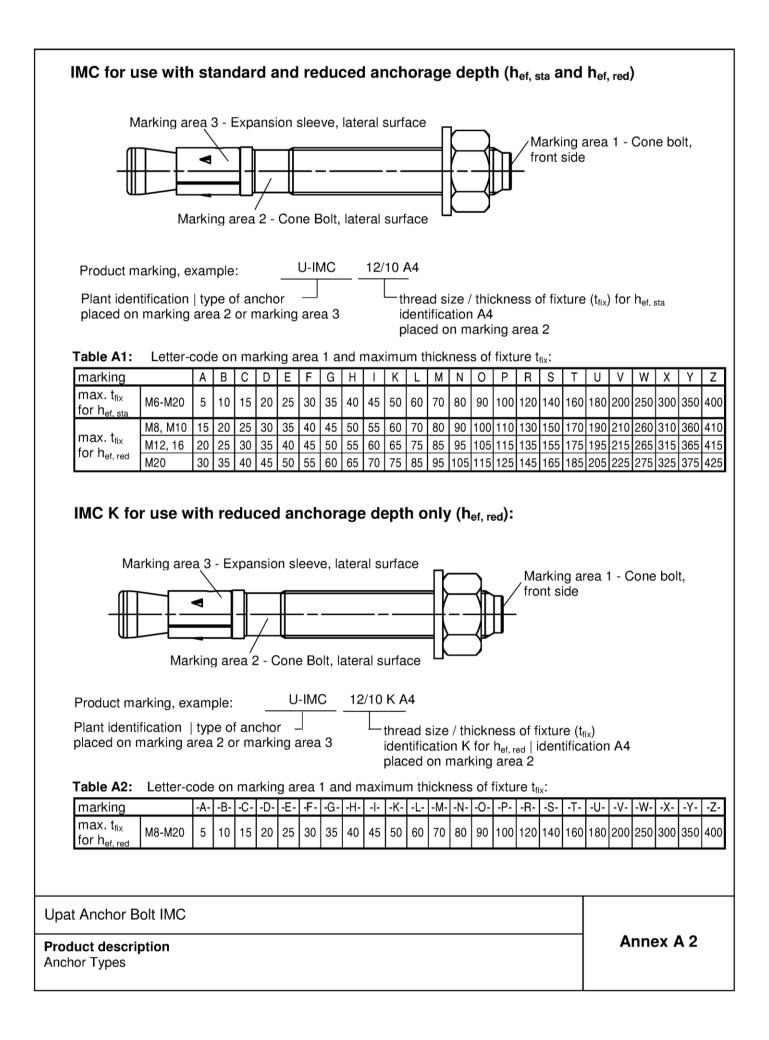
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

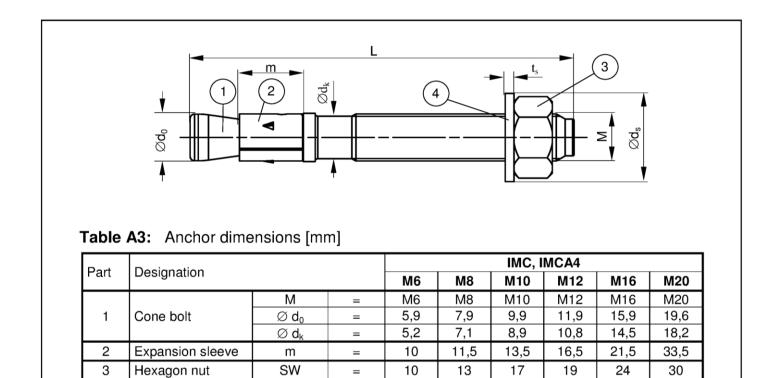
Essential characteristic	Performance
Characteristic resistance for tension and shear loads in concrete	See Annex C 1 and C 2
Edge distances and spacing	See Annex C 1 and C 2
Displacements under tension and shear loads	See Annex C 3

3.1 Mechanical resistance and stability (BWR 1)


3.2 Safety in case of fire (BWR 2)


Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Appendix 4 / 11

1,0

11,5

0

200

45

245

 \geq

 \geq

 \geq

 \leq

-

-

1,4

15

0

200

56

261

ts

 $\oslash d_s$

 $\mathsf{t}_{\mathsf{fix}}$

 L_{min}

 L_{max}

2,3

23

0

300

86

396

1,8

19

0

250

71

316

2,7

29

0

400

120

520

2,7

36

0

500

139

654

Upat Anchor Bolt IMC

4

Washer

Thickness of fixture

Length of anchor

Product description Anchor dimensions Annex A 3

Table A4: Materials IMC (zinc plated $\geq 5\mu m$, DIN EN ISO 4042: 2001-01)				
Part	Designation	Material		
1	Cone bolt	Cold form steel or free cutting steel		
2	Expansion sleeve	Cold strip ¹⁾		
3	Hexagon nut	Steel, property class 8		
4	Washer	Cold strip		

¹⁾ Optional stainless steel

Table A5: Materials IMC (hot-dip galvanized \geq 50µm, ISO 10684: 2004 ¹))

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Stainless steel
3	Hexagon nut	Steel, property class 8
4	Washer	Cold strip

 $^{1)}$ Alternative method sherardized $\geq 50~\mu m,~EN~13811{:}2003$

Table A6: Materials IMC A4

Part	Designation	Material
1	Cone bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Hexagon nut	Stainless steel, property class ≥ 70
4	Washer	Stainless steel

Upat Anchor Bolt IMC

		Specificat	ions of	intende	ed use			
Upat	Anchor Bolt IMC,	IMC A4	M6	M8	M10	M12	M16	M20
	Steel	Zinc plated			1			1.
a	Sleel	Hot-dip galvanized	-			1		
Material	Stainless steel	ss steel A4			1			
Static and quasi-static loads					1			
Reduced anchorage depth						1		
Uncracked concrete					1			

Base materials:

- Normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

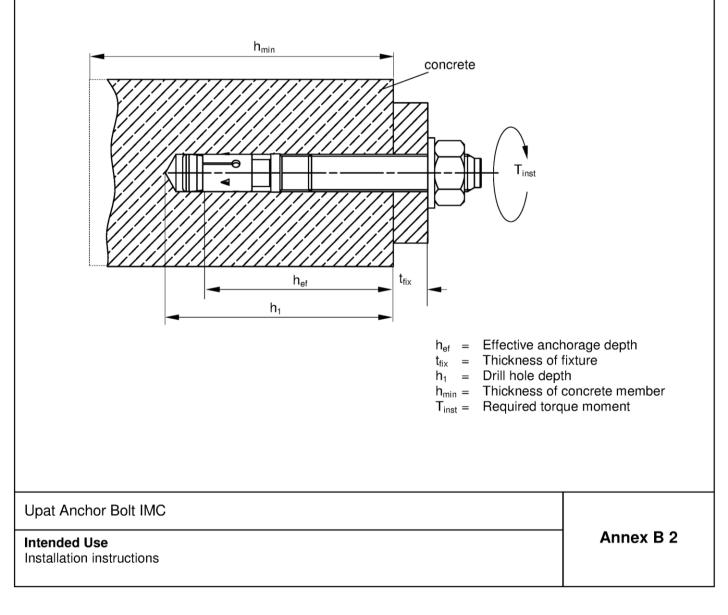
- Structures subject to dry internal conditions (IMC, IMC A4)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (IMC A4)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Hammer or hollow drilling according to Annex B3

Upat Anchor Bolt IMC

Intended Use Specifications Annex B 1

Table B1: Installation parameters								
Type of anchor / size IMC, I	MC A4		M6	M8	M10	M12	M16	M20
Nominal drill hole diameter	$d_0 =$	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	6,45	8,45	10,45	12,5	16,5	20,55
Effective anchorage depth	h _{ef} =	[mm]	30 ²⁾	40 (30 ^{1) 2)})	50 (40 ¹⁾)	65 (50 ¹⁾)	80 (65 ¹⁾)	105 (80 ¹⁾)
Depth of drill hole in concrete	$h_1 \geq$	[mm]	40	56 (46 ^{1) 2)})	68 (58 ¹⁾)	85 (70 ¹⁾)	104 (89 ¹⁾)	135 (110 ¹⁾
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14	18	22
Required torque moment IMC (zinc plated)	T _{inst} =	[Nm]	4	15	30	50	100	200
Required torque moment IMC (hot-dip galvanized)	T _{inst} =	[Nm]	-	15	30	40	70	200
Required torque moment IMC A4	T _{inst} =	[Nm]	4	10	20	35	80	150

¹⁾ Only for reduced anchorage depth ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

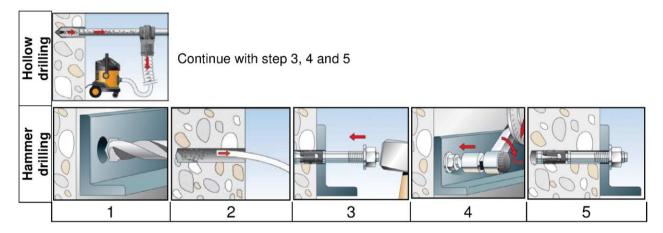


Table B2:	Minimum thickness of concrete n edge distance	nembers,	minim	um spa	cing and	d minim	um
Т	upo of apphor / size IMC IMC AA	MG	MQ	M10	M10	M16	M20

	Type of anchor / size IMC, IMC	A 4		M6	M8	M10	M12	M16	M20
	Effective anchorage depth	h _{ef, sta}	[mm]	30 ²⁾	40	50	65	80	105
age	Minimum thickness of member	h _{min}	[mm]	100	100	100	120	160	200
Standard anchorage depth	Minimum spacing	S _{min}	[mm]	40	40	50 (70 ¹⁾)	70	90 (120 ¹⁾)	120
an	Minimum edge distance	C _{min}	[mm]	40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80 ¹⁾)	120
	Effective anchorage depth	h _{ef, red}	[mm]	i.	30 ²⁾	40	50	65	80
age h	Minimum thickness of member	h _{min}	[mm]	-	100	100	100	120	160
Reduced anchorag depth	Minimum spacing	S _{min}	[mm]	-	40 (50 ¹⁾)	50	70	90	120 (140 ¹⁾)
are	Minimum edge distance	C _{min}	[mm]	-	40 (45 ¹⁾)	80	100	120	120

¹⁾ Only for IMC A4 ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

Installation instructions

No.	Description				
1	Create drill hole with hammer drill	Create drill hole with hollow drill and vacuum cleaner			
2	Clean bore hole				
3	Se	t anchor			
4	Expand anchor with prescribed installation torque T _{inst}				
5	Finished installation				

		Types of drills		
	Hammer drill	######################################		
	Hollow drill	Ī		
Upat Anchor Bolt IMC				
Intended Use Minimum spacing and edge distance Installation instructions		Annex B 3		

Table C1:	Characteristic values of tension resistance for standard and reduced
	anchorage depth under static and quasi-static action

Type of anchor / size			M6	M8	M10	M12	M16	M20		
Steel failure for standard and	roducod	ancharag			WITO		WITO	WIZU		
Characteristic resistance IMC			07.0	41.0	77.0	107				
	$N_{Rk,s}$	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Partial sensitivity factor	γ́Ms	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Steel failure for standard and reduced anchorage depth IMC A4										
Characteristic resistance IMC A4	N _{Rk,s}	[kN]	10,6	16,5	27,2	41,6	78	111		
Partial sensitivity factor	γ́Ms	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Pullout failure for standard ar	nchorage	e depth IMC	C, IMC A	4						
Characteristic resistance C20/25	N _{Rk,p}	[kN]	6 ²⁾			_ 1)				
Pullout failure for reduced anchorage depth IMC, IMC A4										
Characteristic resistance C20/25	N _{Rk,p}	[kN]	- 6 ²⁾ - ¹⁾							
		C25/30	1,12							
		C30/37	1,23							
Increasing factors for N	Ψc	C35/45	5 1,32							
Increasing factors for $N_{Rk,p}$		C40/50	,							
		C45/55	1,50							
		C50/60	1,58							
Factor for robustness	γinst	[-]	1,0							
Concrete cone and splitting fa	ailure for	standard :		age dep	oth IMC	, IMC A	4			
Effective anchorage depth	h _{ef, sta}	[mm]	30 ²⁾	40	50	65	80	105		
Factor k1 for uncracked	k _{ucr,N}	[-]	11,0							
concrete	Nucr,N		,							
Spacing	S _{cr,N}	[mm]	3 h _{ef, sta}							
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef. sta}							
Spacing (splitting failure)	S _{cr,sp}	[mm]	130 ²⁾	190	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}	[mm]	65 ²⁾	95	100	145	175	185		
Concrete cone and splitting failure for reduced anchorage depth IMC, IMC A4										
Effective anchorage depth	h _{ef, red}	[mm]	-	30 ²⁾	40	50	65	80		
Factor k1 for uncracked concrete	$\mathbf{k}_{ucr,N}$	[-]	11,0							
Spacing	S _{cr,N}	[mm]	3 h _{ef, red}							
Edge distance	C _{cr,N}	[mm]			1,5 h	l _{ef, red}				
Spacing (splitting failure)	S _{cr,sp}	[mm]	-	190 ²⁾	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}	[mm]	-	95 ²⁾	100	145	175	185		

¹⁾ Pullout failure is not relevant ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

Upat Anchor Bolt IMC

Characteristic values of tension resistance for standard and reduced anchorage depth

Annex C 1

Table C2:	Characteristic values of shear resistance for standard and reduced
	anchorage depth under static and quasi-static action

Turne of englacy / size			M6	M8	M10	M12	M16	M20		
Type of anchor / size						MIZ	IN 16	M20		
Steel failure without lever arm for			1	-	-					
Charact. resistance IMC	V _{Rk,s}	[kN]	6,0	13,3	21,0	31,3	55,1	67		
Steel failure without lever arm for standard and reduced anchorage depth										
Charact. resistance IMC A4	$V_{Rk,s}$	[kN]	5,3	12,8	20,3	27,4	51	86		
Steel failure with lever arm for standard anchorage depth										
Charact. bending moment IMC	${\sf M}^0_{\sf Rk,s}$	[Nm]	9,4 ¹⁾	26,2	52,3	91,6	232,2	422		
Steel failure with lever arm for star		chorage d	•							
Charact. bending moment IMC A4	${\sf M}^{\sf 0}_{\sf Rk,s}$	[Nm]	8 ¹⁾	26	52	85	216	454		
Steel failure with lever arm for reduced anchorage depth										
Charact. bending moment IMC	${\sf M}^0_{\sf Rk,s}$	[Nm]	-	19,9 ¹⁾	45,9	90,0	226,9	349		
Steel failure with lever arm for reduced anchorage depth										
Charact. bending moment IMC A4	М ⁰ _{Rk,s}	[Nm]	-	21 ¹⁾	47	85	216	353		
Partial sensitivity factor steel failure	γMs	[-]	1,25							
Factor for ductility	k ₇	[-]	1,0							
Concrete pryout failure for standa	rd ancho	rage dept	h IMC, II	MC A4						
Factor for pry-out	k ₈	[-]	1,4 ¹⁾	1,8	2,1	2,3	2,3	2,3		
Factor for robustness	γinst	[-]	1,0							
Concrete pryout failure for reduce	d anchor	age depth	IMC, IN	IC A4						
Factor for pry-out	k ₈	[-]	-	1 ,8 ¹⁾	2,1	2,3	2,3	2,3		
Factor for robustness	γinst	[-]	1,0							
Concrete edge failure for standard	l anchora	ge depth	IMC, IM	C A4						
Effective length of anchor	I _{f.sta}	[mm]	30 ¹⁾	40	50	65	80	105		
Effective diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20		
Factor for robustness	γinst	[-]	1,0							
Concrete edge failure for reduced anchorage depth IMC, IMC A4										
Effective length of anchor	I _{f,red}	[mm]	-	30 ¹⁾	40	50	65	80		
Effective diameter of anchor	d _{nom}	[mm]	-	8	10	12	16	20		
Factor for robustness	γinst	[-]	1,0							
	,									

¹⁾ Use restricted to anchoring of structural components which are statically indeterminate

Upat Anchor Bolt IMC

Performances Characteristic values of shear resistance for standard and reduced anchorage depth

Table C3: Displacements due to tension loads										
Type of anchor / size IMC, IMC A4			M6	M8	M10	M12	M16	M20		
Standard anchorage depth	h _{ef, sta}	[mm]	30	40	50	65	80	105		
Tension load C20/25	Ν	[kN]	2,8	6,1	8,5	12,6	17,2	25,8		
Displacements	δ_{N0}	[mm]	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,0 ¹⁾)		
	δ _{N∞}	[mm]	3,1 (2,7 ¹)							
Reduced anchorage depth	h _{ef, red}	[mm]		30	40	50	65	80		
Tension load C20/25	Ν	[kN]	-	2,8	6,1	8,5	12,6	17,2		
Dienlessmente	δ_{N0}	[mm]		0,4	0,7	0,7	0,9	1,0		
Displacements	δ_{N^∞}	[mm]	1,6 (1,7 ¹⁾)							

¹⁾ Only for IMC A4

Table C4: Displacements due to shear loads

Type of anchor / size IMC,	IMC A4		M6	M8	M10	M12	M16	M20
Shear load IMC	V	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Displacements IMC	δ_{V0}	[mm]	0,7	1,5	1,6	2,0	3,0	2,6
	$\delta_{V\infty}$	[mm]	1,1	2,3	2,4	3,0	4,5	3,9
Shear load IMC A4	V	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Displacements IMC A4	δ_{V0}	[mm]	1,5	1,4	2,1	2,6	2,7	4,6
	δ_{V^∞}	[mm]	2,3	2,2	3,2	3,9	4,1	7,0

Upat Anchor Bolt IMC