

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-12/0258 vom 22. Juli 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Superbond

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

42 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

ETA-12/0258 vom 19. Mai 2016

Europäische Technische Bewertung ETA-12/0258

Seite 2 von 42 | 22. Juli 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z37340.18 8.06.01-348/17

Europäische Technische Bewertung ETA-12/0258

Seite 3 von 42 | 22. Juli 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem fischer Superbond ist ein Verbunddübel, der aus einer Mörtelkartusche mit dem Injektionsmörtel fischer FIS SB oder dem Patronensystem fischer RSB und einem Stahlteil nach Anhang A 5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Mörtelpatrone wird in ein Bohrloch gesetzt und das Stahlteil durch gleichzeitiges Schlagen und Drehen eingetrieben. Der Dübel wird durch Ausnutzung des Verbundes zwischen Stahlteil, Mörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A 5 angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasistatische Einwirkungen unter Zugbeanspruchung	Siehe Anhang C 1 bis C 10
Charakteristischer Widerstand für statische und quasi- statische Einwirkungen unter Querbeanspruchung	Siehe Anhang C 1 bis C 4
Verschiebungen für statische und quasi-statische Einwirkungen	Siehe Anhang C 11 bis C 12
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 13 bis C 15
Dauerhaftigkeit	Siehe Anhang B 3

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z37340.18 8.06.01-348/17

Europäische Technische Bewertung ETA-12/0258

Seite 4 von 42 | 22. Juli 2019

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

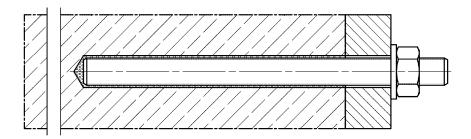
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

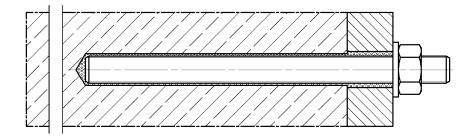
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 22. Juli 2019 vom Deutschen Institut für Bautechnik

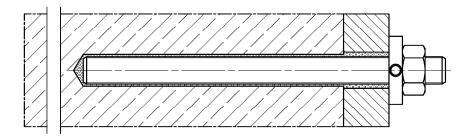
Dr.-Ing. Lars Eckfeldt i. V. Abteilungsleiter

Beglaubigt


Z37340.18 8.06.01-348/17


Einbauzustände Teil 1

Ankerstange oder fischer Ankerstange RG M mit fischer Injektionssystem FIS SB


Vorsteckmontage

Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Vor- oder Durchsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

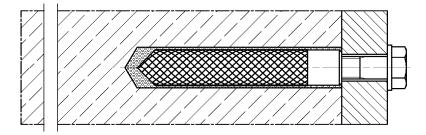
Abbildungen nicht maßstäblich

fischer Superbond

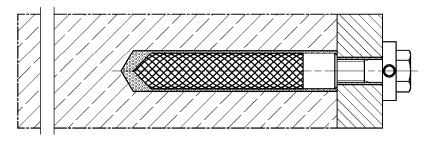
Produktbeschreibung

Einbauzustände Teil 1

Anhang A 1

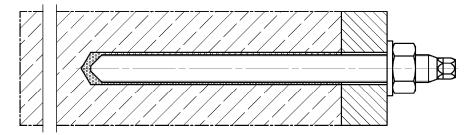


Einbauzustände Teil 2 Betonstahl mit fischer Injektionssystem FIS SB fischer Bewehrungsanker FRA mit fischer Injektionssystem FIS SB Vorsteckmontage Durchsteckmontage (Ringspalt mit Mörtel verfüllt) Abbildungen nicht maßstäblich fischer Superbond Anhang A 2 Produktbeschreibung Einbauzustände Teil 2

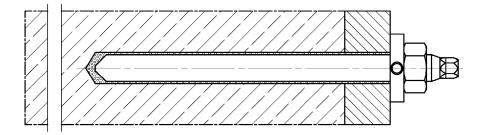


Einbauzustände Teil 3

fischer Innengewindeanker RG MI mit fischer Patronensystem RSB oder fischer Injektionssystem FIS SB Vorsteckmontage



Vorsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

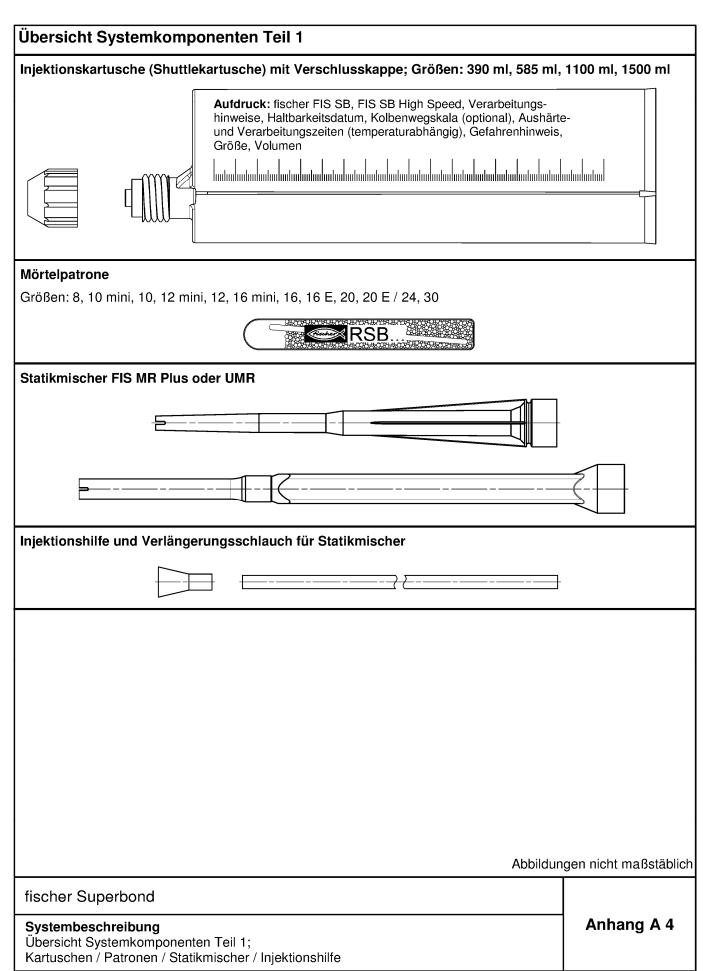


fischer Ankerstange RG M mit fischer Patronensystem RSB

Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich


fischer Superbond

Produktbeschreibung

Einbauzustände Teil 3

Anhang A 3

Übersicht Systemkomponenten Teil 2 **Ankerstange** Größen: M8, M10, M12, M16, M20, M24, M27, M30 fischer Ankerstange RG M Größen: M8, M10, M12, M16, M20, M24, M30 fischer Innengewindeanker RG MI Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter Verfüllscheibe FFD mit Injektionshilfe **Betonstahl** Nenndurchmesser: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 25$, $\phi 28$, $\phi 32$ fischer Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich fischer Superbond Anhang A 5 Systembeschreibung Übersicht Systemkomponenten Teil 2; Stahlteile

	72	
	Abbildungen nicht maß	stäblich
		• •
_		Abbildungen nicht maß Anhang

Teil	Bezeichnung		Mat	erial	
1	Injektionskartusche		Mörtel, Härt	er, Füllstoffe	
	Stahlart	Stahl, verzinkt		ender Stahl 4 1)	Hochkorrosions- beständiger Stahl C 2)
2	Ankerstange	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm² A ₅ > 12% Bruchdehnung	$\begin{array}{c} 50, 70 \\ \text{EN ISO 3} \\ 1.4401; 1.4571; 1.4571; 1.4062, 1.4 \\ \text{EN } 100 \\ f_{uk} \leq 10 \\ A_5 > 12\% \text{ E} \end{array}$	eitsklasse oder 80 506-1:2009 (404; 1.4578; (439; 1.4362; (4662, 1.4462; 88-1:2014 00 N/mm² sruchdehnung enn keine Anfor	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 7 mit f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\% Bruchdehnung derung der$
				rie C2 zu berück	
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4578 1.4439	; 1.4404; 3;1.4571; 1; 1.4362; 88-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	50, 70 EN ISO 3 1.4401; 1.4 1.4571; 1.4	eitsklasse oder 80 506-1:2009 I404; 1.4578; I439; 1.4362; 88-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:1999 A2K	EN ISO 3 1.4401; 1.4 1.4571; 1.4	tsklasse 70 506-1:2009 I404; 1.4578; I439; 1.4362; 38-1:2014)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Handelsübliche Schraube oder Anker-/ Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:1999 A2K A₅ > 8 % Bruchdehnung	EN ISO 3 1.4401; 1.4 1.4571; 1.4 EN 100	tsklasse 70 506-1:2009 1404; 1.4578; 1439; 1.4362; 88-1:2014 ruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung
7	Verfüllscheibe FFD ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4571; 1.4	1404; 1.4578; 1439; 1.4362; 88-1:2014	1.4565;1.4529; EN 10088-1:2014
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rir gemäß NDP oder NCL der EN $f_{uk} = f_{tk} = k \cdot f_{yk}$			k
9	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom Rir oder C mit fyk und k gemäß NDP oder NCL der EN 1992-1-1:2004 + AC:2010 fuk = ftk = k · fyk		1.4362, 1.4062	
		1:2014 der Korrosionswiderst 1:2014 der Korrosionswiderst			
fice	har Suparhand				
	her Superbond duktbeschreibung				 Anhang A 7

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien, Injektionssystem FIS SB

Tabelle B1.1:	Übersicht Nu	ıtzungs-	und Leis	tungska	tegorien	, Injektio	onssyste	em FIS S	SB		
Beanspruchung de	er Verankerung				FIS	SB mit .					
		Anker	stange	Innenge	her ewinde- RG MI		nstahl	Bewehru	cher Ingsanker RA		
Hammerbohren mi Standardbohrer	it				alle G	rößen					
Hammerbohren mi Hohlbohrer (fischer FHD, Helle "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD")				Bohr	ernenndu 12 mm b	rchmesse is 35 mm	r (d ₀)				
Diamantbohren					nicht z	ulässig					
Statische und quasi-statische	ungerissenen Beton gerissenen	alle Größen	Tabellen: C1.1 C4.1	alle Größen	Tabellen: C2.1 C4.1	alle Größen	Tabellen: C3.1 C4.1	alle Größen	Tabellen C3.2 C4.1		
Belastung, im	Beton		C5.1 C11.1		C7.1 C11.2		C9.1 C12.1		C10.1 C12.2		
Seismische Leistungs- kategorie (nur Hammer-	C1	alle Größen	Tabellen: C13.1 C14.2 C15.1			alle Größen	Tabellen: C14.1 C14.2 C15.2				
bohren mit Standardbohrer / Hohlbohrer)	C2	M12 M16 M20 M24	Tabellen: C13.1 C14.2 C16.1		-	-	-		-		
l Nutzungs-	Trockener 1 oder nasser Beton	alle Größen									
kategorie I	Wasser- 2 gefülltes Bohrloch				nicht z	ulässig					
Einbaurichtung		D3 (hori	zontale ur	ıd vertikale	e Montage	nach unte	en, sowie	Überkopfn	nontage)		
Einbaumethode				Vor-	oder Durc	hsteckmo	ntage				
Einbautemperatur		FIS S	FIS B High Sp		nin = -15 °C nin = -20 °C						
Tem	peraturbereich I	-40 °C	C bis +40 °	C T _{st}	= +40 °C	/ T _{It} = +24	°C				
Gebrauchs- Templemperatur-	peraturbereich II	-40 °C	C bis +80 °	C T _{st}	= +80 °C	/ T _{It} = +50	°C				
bereiche Temp	eraturbereich III		bis +120		= +120 °C						
Temp	eraturbereich IV	-40 °C	bis +150	°C T _{st}	= +150 °C	$C/T_{lt} = +9$	0 °C				
ficebox Cuperb											
fischer Superb Verwendungszv Spezifikationen (veck	jektionssy	stem FIS	SB				Anhan	g B 1		

Spezifizierung des Verwendungszwecks (Teil 2) Tabelle B2.1: Übersicht Nutzungs- und Leistungskategorien, Patronensystem RSB Beanspruchung der Verankerung RSB mit ... fischer Ankerstange RG M fischer Innengewindeanker RG MI Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (fischer FHD, Heller Bohrernenndurchmesser (d₀) alle Größen "Duster Expert"; 12 mm bis 35 mm Bosch "Speed Clean"; Hilti "TE-CD, TE-YD") alle Größen1) Diamantbohren Tabellen: Tabellen: ungerissenen alle Größen alle Größen Statische und C2.1 Beton C1.1 quasi-statische C4.1 C4.1 gerissenen Belastung, im C6.1 C8.1 alle Größen1) alle Größen1) Beton C11.2 C11.1 Tabellen: Seismische C13.1 Leistungsalle Größen C1 C14.2 kategorie C15.1 (nur Hammerbohren mit Standardbohrer / C2 Hohlbohrer) Trockener I1 oder nasser alle Größen Beton Nutzungskategorie Wasser-12 gefülltes alle Größen Bohrloch D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) Einbaurichtung nur Vorsteckmontage Einbaumethode Einbautemperatur $T_{i,min} = -30$ °C bis $T_{i,max} = +40$ °C $T_{st} = +40 \, ^{\circ}\text{C} \, / \, T_{lt} = +24 \, ^{\circ}\text{C}$ -40 °C bis +40 °C Temperaturbereich I Gebrauchs-Temperaturbereich II -40 °C bis +80 °C $T_{st} = +80 \, {}^{\circ}\text{C} \, / \, T_{lt} = +50 \, {}^{\circ}\text{C}$ temperatur- $T_{st} = +120 \, {}^{\circ}C \, / \, T_{lt} = +72 \, {}^{\circ}C$ Temperaturbereich III -40 °C bis +120 °C bereiche Temperaturbereich IV -40 °C bis +150 °C $T_{st} = +150 \, ^{\circ}\text{C} \, / \, T_{lt} = +90 \, ^{\circ}\text{C}$ 1) Bei Diamantbohren im gerissenen Beton nur Bohrernenndurchmesser (d₀) ≥ 18 mm erlaubt fischer Superbond Anhang B 2 Verwendungszweck

Z48588.19 8.06.01-348/17

Spezifikationen (Teil 2), fischer Patronensystem RSB

Spezifizierung des Verwendungszwecks (Teil 3)

Verankerungsgrund:

Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 7 Tabelle 7.1.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen unter Erdbebenbeanspruchung erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055 Die Verankerungen sind außerhalb kritischer Bereiche (z.B. plastischer Gelenke) der Betonkonstruktion anzuordnen. Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht durch diese Europäisch Technische Bewertung (ETA) abgedeckt.

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Superbond Anhang B 3 Verwendungszweck Spezifikationen (Teil 3) 8.06.01-348/17

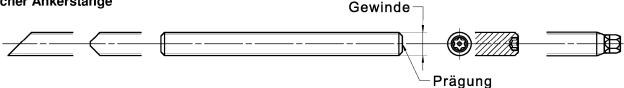
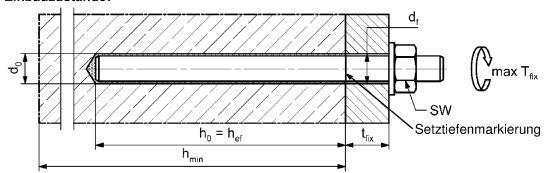

Z48588.19

Tabelle 64.1:	Montagekennwerte für Ankerstangen in Verbindung mit dem
	Injektionssystem FIS SB

Ankerstangen		G	ewinde	М8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite		SW		13	17	19	24	30	36	41	46
Bohrernenndurchme	sser	d₀		10	12	14	18	24	28	30	35
Bohrlochtiefe		h ₀					h ₀ =	h _{ef}			
Effektive Menenkenn		h _{ef, min}	•	60	60	70	80	90	96	108	120
Effektive Verankerun 	gstiere	h _{ef, max}		160	200	240	320	400	480	540	600
Minimaler Achs- und	Randabstand	Smin = Cmin	[mm]	40	45	55	65	85	105 120 14		
Durchmesser des	Vorsteck- montage	df		9	12	14	18	22	26	30	33
Durchgangsloch im Anbauteil	Durchsteck- montage	df		11	14	16	20	26	30	33	40
Minimale Dicke des E	h_{min}		h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀					
Maximales Montaged	drehmoment	max T _{fix}	[Nm]	10	20	40	60	120	150	200	300

fischer Ankerstange



Prägung (an beliebiger Stelle) fischer Ankerstange:

Festigkeitsklasse 8.8, Nichtrostender Stahl A4 Festigkeitsklasse 80 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 80: ●

Nichtrostender Stahl A4 Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 50: •• Alternativ: Farbmarkierung nach DIN 976-1

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A7, Tabelle A7.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- · Markierung der Verankerungstiefe

Abbildungen nicht maßstäblich

fischer Superbond

Verwendungszweck

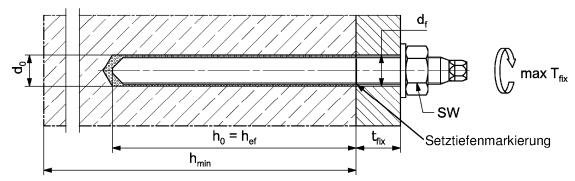
Montagekennwerte für Ankerstangen in Verbindung mit dem Injektionssystem FIS SB

Anhang B 4

Tabelle B5.1: Montagekennwerte für **fischer Ankerstangen RG M** in Verbindung mit dem **Patronensystem RSB**

Ankerstangen RG M	G	ewinde	М8	M10	M12	M16	M20	M24	M30
Schlüsselweite	SW		13	17	19	24	30	36	46
Bohrernenndurchmesser	d₀		10	12	14	18	25	28	35
Bohrlochtiefe	h ₀			•		$h_0 = h_{ef}$			
	h _{ef,1}			75	75	95			
Effektive Verankerungstiefe	h _{ef,2}		80	90	110	125	170	210	280
	h _{ef,3}			150	150	190	210		
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	40	45	55	65	85	105	140
Durchmesser des Durchgangsloch im Anbauteil nur Vorsteck- montage	- d _f		9	12	14	18	22	26	33
Minimale Dicke des Betonbauteils	h _{min}			h _{ef} + 30 (≥ 100)		h _{ef} + 2d ₀			
Maximales Montagedrehmoment	max T _{fix}	[Nm]	10	20	40	60	120	150	300

fischer Ankerstange RG M



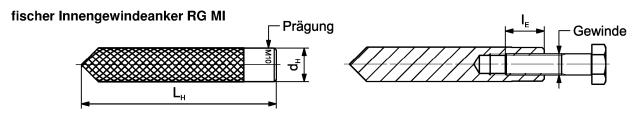
Prägung (an beliebiger Stelle) fischer Ankerstange RG M:

Festigkeitsklasse 8.8, Nichtrostender Stahl A4 Festigkeitsklasse 80 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 80: ●

Nichtrostender Stahl A4 Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 50: ●● Alternativ: Farbmarkierung nach DIN 976-1

Einbauzustände:

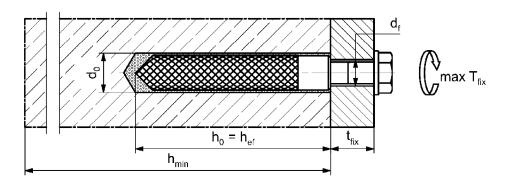
Abbildungen nicht maßstäblich


fischer Superbond

Verwendungszweck

Montagekennwerte für fischer Ankerstangen RG M in Verbindung mit dem Patronensystem RSB

Innengewindeanker RG MI	G	ewinde	М8	M10	M12	M16	M20			
Hülsendurchmesser	d = dн		12	16	18	22	28			
Bohrernenndurchmesser	d ₀		14	18	20	24	32			
Bohrlochtiefe	h ₀		$h_0 = h_{ef} = L_H$							
Effektive Verankerungstiefe (h _{ef} = L _H)	h _{ef}		90	90	125	160	200			
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	55	65	75	95	125			
Durchmesser des Durchgangsloch im Anbauteil	df		9	12	14	18	22			
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260			
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45			
Minimale Einschraubtiefe	I _{E,min}		8	10	12	16	20			
Maximales Montagedrehmomen	t max T _{fix}	[Nm]	10	20	40	80	120			


Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich A4; z.B.: M10 A4

Hochkorrosionsbeständiger Stahl → zusätzlich C; z.B.: M10 C

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 7, Tabelle A7.1 entsprechen

Einbauzustände:

Abbildungen nicht maßstäblich

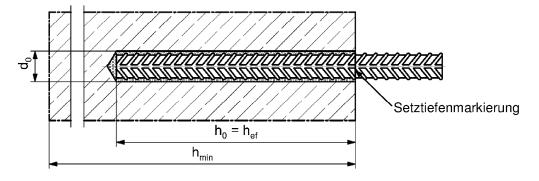
fischer Superbond

Verwendungszweck

Montagekennwerte für fischer Innengewindeanker RG MI

Anhang B 6

Tabelle B7.1: Montagekenn	werte f	ür Bet o	onstal	nl							
Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28	32
Bohrernenndurchmesser	d ₀		10 12	12 14	14 16	18	20	25	30	35	40
Bohrlochtiefe		$h_0 = h_{\text{ef}}$									
Effektive Verankerungstiefe	h _{ef,min}		60	60	70	75	80	90	100	112	128
	h _{ef,max}		160	200	240	280	320	400	500	560	640
Minimaler Achs- und Randabstand	Smin = Cmin] [mm]	40	45	55	60	65	85	110	130	160
Mindestdicke des Betonbauteils h _{min}			1	f + 30 : 100)		•		h _{ef} + 2	2d ₀		


¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Superbond

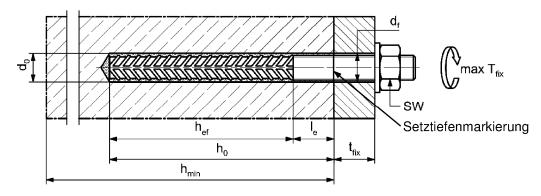
Verwendungszweck

Montagekennwerte Betonstahl

Anhang B 7

Bewehrungsanker F	RA	G	ewinde	M 1	2 ¹⁾	M16	M20	M24	
Stabnenndurchmesse	r	ф		1	2	16	20	25	
Schlüsselweite		SW		1	9	24	30	36	
Bohrernenndurchmes	ser	d_0		14	16	20	25	30	
Bohrlochtiefe		h ₀				h _{ef}	+ l _e		
Effolting Vorankarina	retiofo	h _{ef,min}		70		80	90	96	
ffektive Verankerungstiefe		h _{ef,max}		140		220	300	380	
Abstand Betonoberflä Schweißstelle	che zur	le		100					
Minimaler Achs- und Randabstand		Smin = Cmin	[mm]	55		65	85	105	
Durchmesser des	Vorsteck- montage	≤ d _f		1	4	18	22	26	
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		18		22	26	32	
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30 (≥ 100)					
Maximales Montagedi	rehmoment	max T _{fix}	[Nm]	4	0	60	120	150	

¹⁾ Beide Bohrernenndurchmesser sind möglich


fischer Bewehrungsanker FRA

Prägung stirnseitig z. B.:

FRA (für nichtrostenden Stahl);
FRA C (für hochkorrosionsbeständigen Stahl)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Superbond

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA

Tabelle B9.	Tabelle B9.1: Abmessungen der Mörtelpatronen RSB													
Mörtelpatrone RSB RSB RSB RSB 8 10 10 mini					RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16 E	RSB 20	RSB 20 E / 24	RSB 30		
Patronen Durchmesser	d₽	[mm]	9,0 10,5			12,5			16,5			23,0		
Patronen Länge	L _P	[mm]	85	72	90	72	97	72	95	123	160	190	260	

Tabelle B9.2: Zuordnung der Mörtelpatronen RSB zu fischer Ankerstangen RG M

Ankerstange RG M			М8	M10	M12	M16	M20	M24	M30
Effektive Verankerungstiefe	h _{ef, 1}	[mm]		75	75	95			
Zugehörige Mörtelpatrone RSB		[-]		10 mini	12 mini	16 mini			
Effektive Verankerungstiefe	h _{ef, 2}	[mm]	80	90	110	125	170	210	280
Zugehörige Mörtelpatrone RSB		[-]	8	10	12	16	20	20 E/ 24	30
Effektive Verankerungstiefe	h _{ef, 3}	[mm]		150	150	190	210		
Zugehörige Mörtelpatrone RSB		[-]		2 x 10 mini	2 x 12 mini	2 x 16 mini	20 E / 24		

Tabelle B9.3: Zuordnung der Mörtelpatronen RSB zu fischer Innengewindeanker RG MI

Innengewindeanker RG	МІ		М8	M10	M12	M16	M20
Effektive Verankerungstiefe h _{ef} [mr			90	90	125	160	200
Zugehörige Mörtelpatrone RSB		[-]	10	12	16	16 E	20 E / 24

Abbildungen nicht maßstäblich

fischer Superbond

Verwendungszweck

Abmessungen Mörtelpatrone

Zuordnung Mörtelpatronen RSB zu Ankerstange RG M und Innengewindeanker RG MI

Tabelle B10.1: Kennwerte der Reinigungsbürsten BS / BSB (Stahlbürste)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d₀	[mm]	10	12	14	16	18	20	24	25	28	30	32	35	40
Stahlbürsten- durchmesser	d _b	[mm]	11	14	16	2	0	25	26	27	30		40		42

Tabelle B10.2: Maximale **Verarbeitungszeit** des Mörtels und minimale **Aushärtezeit** (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten. Minimale Kartuschentemperatur +5 °C; minimale Patronentemperatur -15 °C)

Temperatur im		arbeitungszeit ^{ork}	Minimale Aushärtezeit t _{cure}					
Verankerungsgrund [°C]	FIS SB	FIS SB High Speed	FIS SB	FIS SB High Speed	RSB			
-30 bis -20					120 h			
> -20 bis -15		60 min		24 h	48 h			
> -15 bis -10	60 min	30 min	36 h	8 h	30 h			
> -10 bis -5	30 min	15 min	24 h	3 h	16 h			
> -5 bis ±0	20 min	10 min	8 h	2 h	10 h			
> ±0 bis +5	13 min	5 min	4 h	1 h	45 min			
> +5 bis +10	9 min	3 min	2 h	45 min	30 min			
> +10 bis +20	5 min	2 min	1 h	30 min	20 min			
> +20 bis +30	4 min	1 min	45 min	15 min	5 min			
> +30 bis +40	2 min		30 min		3 min			

Abbildungen nicht maßstäblich

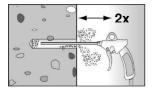
fischer Superbond

Verwendungszweck

Kennwerte der Reinigungsbürsten Verarbeitungs- und Aushärtezeiten

Montageanleitung Teil 1; Injektionssystem FIS SB

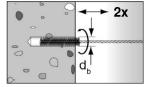
Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)


1

Bohrloch erstellen.

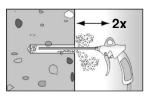
Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B4.1**, **B6.1**, **B7.1**, **B8.1**

2


Bohrloch reinigen:

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar) Im ungerissenen Beton darf der Ausbläser ABG verwendet werden (Montagebedingungen:

 $d_0 < 18 \text{ mm und } h_{ef} < 10d)$



3

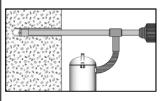
Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B10.1**

4

Bohrloch reinigen:

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar) Im ungerissenen Beton darf der Ausbläser ABG verwendet werden (Montagebedingungen: d₀ < 18 mm und h_{ef} < 10d)

Mit Schritt 5 fortfahren (Anhang B 12)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

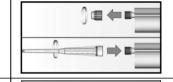
2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B4.1**, **B6.1**, **B7.1**, **B8.1**

Mit Schritt 5 fortfahren (Anhang B 12)

fischer Superbond


Verwendungszweck

Montageanleitung Teil 1, Injektionssystem FIS SB

Montageanleitung Teil 2; Injektionssystem FIS SB

Kartuschenvorbereitung

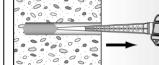
Verschlusskappe abschrauben

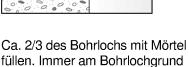
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

6

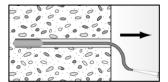
5

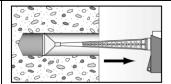
Kartusche in die Auspresspistole legen.


7



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.


Mörtelinjektion


8

beginnen und Blasen vermeiden

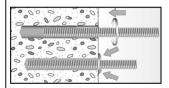
Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

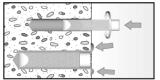
Bei Überkopfmontage, tiefen Bohrlöchern ($h_0 > 250$ mm) oder großen Bohrlochdurchmessern ($d_0 \ge 40$ mm) Injektionshilfe verwenden

Mit Schritt 9 fortfahren (Anhang B 13)

fischer Superbond

Verwendungszweck

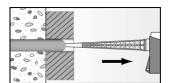

Montageanleitung Teil 2, Injektionssystem FIS SB



Montageanleitung Teil 3; Injektionssystem FIS SB

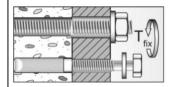
Montage Ankerstange und fischer Innengewindeanker RG MI

9

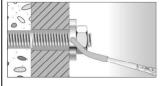


Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungselementes muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, das Verankerungselement sofort ziehen und Mörtel nachinjizieren.

Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer Zentrierkeile) fixieren bis der Mörtel auszuhärten beginnt

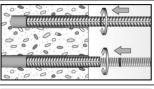

Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

11

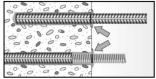

Aushärtezeit abwarten, tcure siehe Tabelle B10.2

12

Montage des Anbauteils, max T_{fix} siehe Tabelle B4.1 and **B6.1**


Option

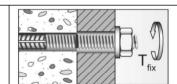
Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Anker und Anbauteil (Ringspalt) über die Verfüllscheibe FFD mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS HB, FIS SB, FIS V, FIS EM Plus).


ACHTUNG: Bei Verwendung der Verfüllscheibe FFD reduziert sich tfix (Nutzlänge des Ankers)

Montage Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, das Verankerungselement sofort ziehen und Mörtel nachinjizieren.

11

Aushärtezeit abwarten, tcure siehe Tabelle B10.2

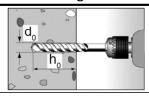
12

Montage des Anbauteils, max Tfix siehe Tabelle B8.1

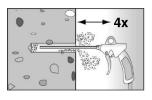
fischer Superbond

Verwendungszweck

Montageanleitung Teil 3, Injektionssystem FIS SB


Anhang B 13

Montageanleitung Teil 4; Patronensystem RSB

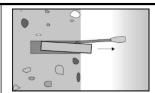

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B5.1** und **B6.1**

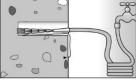
2

Bohrloch reinigen: Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar) Im ungerissenen Beton darf der Ausbläser ABG verwendet werden (Montagebedingungen: d₀ < 18 mm und hef < 10d)

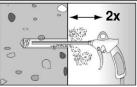


Mit Schritt 6 fortfahren (Anhang B 15)

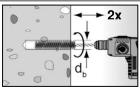
Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)


1 h₀

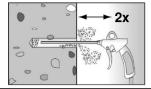
Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B5.1** und **B6.1**


Bohrkern brechen und herausziehen.

2


Bohrloch spülen, bis das Wasser klar wird.

3


Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

4

Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten. Entsprechende Bürsten siehe **Tabelle B10.1**

5

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

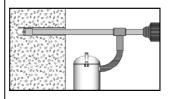
Mit Schritt 6 fortfahren (Anhang B 15)

fischer Superbond

Verwendungszweck

Montageanleitung Teil 4, Patronensystem RSB

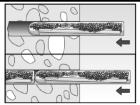
Montageanleitung Teil 5; Patronensystem RSB


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B2.1**) auf Funktion der Staubabsaugung prüfen

2

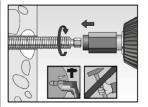

Verwendung eines geeigneten Staubabsaugsystems wie z.B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B5.1** und **B6.1**

Mit Schritt 6 fortfahren (Anhang B 15)

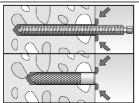
Montage fischer Ankerstange RG M oder fischer Innengewindeanker RG MI

6



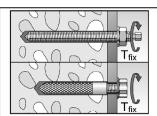
Mörtelpatrone von Hand in das Bohrloch stecken. Passende Mörtelpatrone RSB oder RSB mini siehe **Tabelle B9.2**.

Abhängig vom Verankerungselement, passendes Setzwerkzeug / Adapter verwenden


7

Nur saubere und ölfreie Ankerstangen verwenden. fischer Ankerstange RG M oder fischer Innengewinde-anker RG MI mit dem Bohrhammer mit eingeschaltetem Schlag und passendem Adapter in die Patrone eintreiben. Anhalten, wenn der Anker den Grund des Bohrlochs erreicht und die korrekte Verankerungstiefe erreicht ist.

8


Nach dem Erreichen der korrekten Setztiefe muss Überschussmörtel aus dem Bohrlochmund austreten. Falls nicht, ist der Anker sofort zu ziehen und eine zweite Mörtelpatrone in das Bohrloch zu stecken. Setzvorgang (Schritt 7) wiederholen.

9

Aushärtezeit abwarten, tcure siehe **Tabelle B10.2**

10

Montage des Anbauteils, max T_{fix} siehe T**abellen B5.1** und **B6.1**

fischer Superbond

Verwendungszweck

Montageanleitung Teil 5, Patronensystem RSB

Anhang B 15

Z48589.19

Tabelle C1.1:	Leistungsmerkmale ³⁾ für die Stahltragfähigkeit unter Zug- / Querzug-
	beanspruchung von fischer Ankerstangen und Standard-Gewindestangen

	504110	practialing	• • • •				90			<u> </u>		.90	
Anke	r- / Gewindestange				M8	M10	M12	M16	M20	M24	M27	M30	
Zugtr	agfähigkeit, Stahlve	rsagen							-				
χ. α	0		5.8		19(17)	29(27)	43	79	123	177	230	281	
Z C	Stahl verzinkt		8.8		29(27)	47(43)	68	126	196	282	368	449	
Charakt erstand	Nichtrostender	Festigkeits- klasse	50	[kN]	19	29	43	79	123	177	230	281	
Charakt. Widerstand	Stahl A4 und	Kiasse	70		26	41	59	110	172	247	322	393	
×	Hochkorrosions- beständiger Stahl C		80		30	47	68	126	196	282	368	449	
Teilsi	cherheitsbeiwerte 1))		I						I	l		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Obablasasiala		5.8		1,50								
neits //ms,n	Stahl verzinkt		8.8		1,50								
ther!	Nichtrostender	Festigkeits- klasse	50	[-]	2,86								
eilsicherheits beiwert y _{Ms,N}	Nichtrostender Stahl A4 und Hochkorrosions-	Nasse	70		1,502) / 1,87								
_ը 	beständiger Stahl C		80					1,	60				
Quera	zugtragfähigkeit, Sta	ahlversager	1	_									
Ohne	Hebelarm												
Rk,s	Stabl varzinkt	Festigkeits- klasse	5.8		9(8)	15(13)	21	39	61	89	115	141	
Charakt. Widerstand V ^o rk,	Stahl verzinkt		8.8		15(13)	23(21)	34	63	98	141	184	225	
Charakt.	Nichtrostender		50		9	15	21	39	61	89	115	141	
[호 s	Stahl A4 und Hochkorrosions-	Madde	70		13	20	30	55	86	124	161	197	
Ņ	beständiger Stahl C		80		15	23	34	63	98	141	184	225	
Duktil	itätsfaktor		k ₇	[-]				1	,0				
Mit H	ebelarm	,				, ,			,				
ر ق	Stahl verzinkt		5.8		19(16)	37(33)	65	166	324	560	833	1123	
Vid.		Castialisita	8.8		30(26)	60(53)	105	266	519	896	1333	1797	
narakt. Wide stand M ^{0_{Rk,s}}	Nichtrostender	Festigkeits- klasse	50	[Nm]	19	37	65	166	324	560	833	1123	
Charakt. Widerstand M ⁰ Rk,s	Stahl A4 und Hochkorrosions-		70		26	52	92	232	454	784	1167	1573	
	beständiger Stahl C		80		30	60	105	266	519	896	1333	1797	
Teilsi	cherheitsbeiwerte 1))											
 δ >	Stahl verzinkt		5.8					1,	25				
heit ‱,	Stahl verzinkt Popularia Stahl verzinkt Nichtrostender Stahl A4 und Hochkorrosions-		8.8					1,	25				
cher ert	Nichtrostender	Festigkeits- klasse	50	[-]				2,	38				
eilsiche beiwert	Stahl A4 und Hochkorrosions-		70					1,25 ²⁾	/ 1,56				
٣ ــــــــــــــــــــــــــــــــــــ	beständiger Stahl C		80				1,33						

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Superbond

Leistung
Leistungsmerkmale für die Stahltragfähigheit von fischer Ankerstangen und
Standard-Gewindestangen

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl C, mit f_{yk} / f_{uk} ≥ 0,8 und A₅ > 12 % (z.B. fischer Ankerstangen)

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C2.1:						ngfähigkeit er Innengev						
fischer Innenge	windea	nker RG MI			M8	M10	M12	M16	M20			
Zugtragfähigkei	t, Stahl	versagen										
Charakt.		Festigkeits- klasse	5.8		19	29	43	79	123			
Widerstand mit	$N_{Rk,s}$		8.8	kN]	29	47	68	108	179			
Schraube		Festigkeits- klasse 70	A4 C		26 26	41	59 59	110 110	172 172			
Teilsicherheitsb	eiwerte	e ¹⁾				1	•	•				
		Festigkeits-	5.8		1,50							
Teilsicherheits-		klasse	8.8		1,50							
beiwerte	γ̃Ms,N	Festigkeits-	A4	[-]	1,87							
		klasse 70	С				1,87					
Querzugtragfäh	igkeit,	Stahlversage	en									
Ohne Hebelarm												
•		Festigkeits-	5.8	[kN]	9,2	14,5	21,1	39,2	62,0			
Charakt. Widerstand mit	V^0 Rk.s	klasse	8.8		14,6	23,2	33,7	54,0	90,0			
Schraube	V *HK,S	Festigkeits-	_A4_	ַרואַ]	12,8	20,3	29,5	54,8	86,0			
		klasse 70	С		12,8	20,3	29,5	54,8	86,0			
Duktilitätsfaktor			k 7	[-]			1,0					
Mit Hebelarm												
0		Festigkeits-	5.8		20	39	68	173	337			
Charakt. Widerstand mit	$M^0_{Rk,s}$	klasse	8.8	Nm]	30	60	105	266	519			
Schraube	ivi*Hk,s	Festigkeits-	_A4'	[ווואו	26	52	92	232	454			
		klasse 70	С		26	52	92	232	454			
Teilsicherheitsb	eiwerte	e ¹⁾										
		Festigkeits-	5.8				1,25					
Teilsicherheits-	0/44 \	klasse	8.8	[-]			1,25					
beiwerte	γMs,V	Festigkeits-	A4	[-]			1,56					
		klasse 70	С				1,56					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Superbond

Leistung
Leistungsmerkmale für die Stahltragfähigkeiten von fischer Innengewindeankern RG MI

Anhang C 2

Tabelle C3.1: Leistungsmerkmale für die Stahltragfähigkeit unter Zug-/ Querzugbeanspruchung von Betonstahl												
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28	32	
Zugtragfähigkeit, Stahlversage	n			-	<u> </u>		-		-	-		
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]					As · fuk1)				
Querzugtragfähigkeit, Stahlver	sagen											
Ohne Hebelarm												
Charakteristischer Widerstand	V ⁰ Rk,s	[kN]				0,	5 · A₅ · f	uk ¹⁾				
Duktilitätsfaktor	k ₇	[-]					0,8					
Mit Hebelarm												
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]				1,2	· W _{el} · ·	f uk ¹⁾				

¹⁾ fuk bzw. fyk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C3.2: Leistungsmerkmale für die Stahltragfähigkeit unter Zug-/ Querzugbeanspruchung von fischer Bewehrungsankern FRA

fischer Bewehrungsanker FRA			M12	M16	M20	M24
Zugtragfähigkeit, Stahlversage	n	-		•	-	
Charakteristischer Widerstand	N _{Rk,s}	[kN]	63	111	173	270
Teilsicherheitsbeiwert 1)						
Teilsicherheitsbeiwert	γMs,N	[-]		1	,4	
Querzugtragfähigkeit, Stahlvers	sagen					
Ohne Hebelarm						
Charakteristischer Widerstand	V^0 Rk,s	[kN]	30	55	86	124
Duktilitätsfaktor	k ₇	[-]		1	,0	
Mit Hebelarm						
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]	92	233	454	785
Teilsicherheitsbeiwert 1)		•		•	•	
Teilsicherheitsbeiwert	γMs,V	[-]		1,	56	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Superbond

Leistung
Leistungsmerkmale für die Stahltragfähigkeiten von Betonstahl und fischer Bewehrungsanker FRA

Anhang C 3

Zugbelastung							Alle	Grö	3en					
Ungerissener Be	ton	k _{ucr,N}						11,0						
Gerissener Betor	1	k _{cr,N}	[-]					7,7						
Faktoren für Be	tondruckfestigkei	ten > C	20/25											
	C25/30			1,02										
_	C30/37							1,04						
Erhöhungs-	C35/45)T(.,					1,07						
faktor für τ _{Rk}	C40/50	Ψ_{c}	[-]					1,08						
	C45/55			1,09										
_	C50/60							1,10						
Versagen durch	Spalten		•											
	h / h _{ef} ≥ 2,0						-	1,0 h _e	f					
Randabstand -	$2.0 > h / h_{ef} > 1.3$	C _{cr,sp}	[4,6	h _{ef} - 1	,8 h					
	h / h _{ef} ≤ 1,3		[mm]		2,26 h _{ef}									
Achsabstand			2 C _{Cr,sp}											
Versagen durch	kegelförmigen Be	etonau	sbruc	h										
Randabstand		Ccr,N	[mama]				-	1,5 h _e	f					
Achsabstand	[mm]		2 Ccr,N											
Faktoren für die	Dauerzugbelastu	ng												
Temperaturberei	ch		[-]	24 °C	/ 40 °C	50 °C / 80 °C		72	2 °C / 1	20 °C	90 °C /	150 °C		
Faktor		$\Psi^0_{ m sus}$	[-]	0,	84	0	,86		0,8	4	0,9	91		
Querzugbelastu	ng					-								
Montagebeiwert		γinst	[-]					1,0						
Betonausbruch	auf der lastabgew	andte	n Seite	•										
Faktor für Betona	ausbruch	k ₈	[-]					2,0						
Betonkantenaus	sbruch		•											
Wert von hef (= lf)	unter Querlast		[-]	В	edingun				2-4:201 chung		itel 7.2.2	.5;		
Rechnerische D	urchmesser													
				M8	M10	M12	M16	6 1	/120	M24	M27	M30		
Größe				8	10	12	16		20	24	27	30		
Größe		d _{nom}	. []	0										
Größe fischer Ankerstar Standard-Gewind		d _{nom}	[mm]	12	16	18	22		28	-	-	-		
Größe fischer Ankerstar Standard-Gewind	destange indeanker RG MI		[mm]			18 12	22 16		28 20	- 25	-	-		
Größe fischer Ankerstar Standard-Gewind fischer Innengew	destange indeanker RG MI ngsanker FRA	d _{nom}	[mm] •	12	16					- 25 25	- - 28			

Tabelle C5.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer Ankerstangen
	und Standard-Gewindestangen im hammergebohrten Bohrloch in
	Verbindung mit Injektionsmörtel FIS SB; ungerissener oder gerissener
	Beton

		Beton		-								
Anker- /	Gew	indestange			M8	M10	M12	M16	M20	M24	M27	M30
Kombini	ertes	s Versagen durc	h Herau	ısziehen ι	ınd Bet	onausbi	ruch					
Gewinde	durch	nmesser	d	[mm]	8	10	12	16	20	24	27	30
Ungeriss	sene	r Beton										
Charakte	eristi	sche Verbundtr	agfähig	keit im un	gerisse	nen Bet	on C20/	25				
<u>Hammerl</u>	oohre	en mit Standard-	oder Hol	<u>hlbohrer (t</u>	rockene	r oder na	asser Be	ton)				
	l:	24 °C / 40 °C			12	13	13	13	13	12	10	10
Tempe-	II:	50 °C / 80 °C		[N1/mm2]	12	12	12	13	13	12	10	10
ratur- bereich	III:	72 °C / 120 °C	TRk,ucr	[N/mm²] -	10	11	11	11	11	11	9,0	9,0
	IV:	90 °C / 150 °C			10	10	10	11	10	10	8,0	8,0
Montage	beiw	verte					•			•		
Trockene	er ode	er nasser Beton	γinst	[-]				1	,0			
Gerisser	ner B	eton										
Charakte	eristi	sche Verbundtr	agfähig	keit im ge	rissene	n Beton	C20/25					
<u>Hammerl</u>	oohre	en mit Standard-	<u>oder Ho</u>	<u>hlbohrer (t</u>	rockene	<u>er oder n</u>	<u>asser Be</u>	ton)				
	l:	24 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5	7,5
Tempe-	II:	50 °C / 80 °C		[N]/ma ma 2]	6,0	6,5	7,5	7,5	7,5	7,5	7,0	7,0
ratur bereich	III:	72 °C / 120 °C	τRk,cr	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,0	6,0
	IV:	90 °C / 150 °C			5,0	5,5	6,0	6,0	6,0	6,0	5,5	5,5
Montage	beiw	verte										
Trockene	er ode	er nasser Beton	γinst	[-]				1	,0			

fischer	Super	bond
---------	-------	------

Leistung

Leistungsmerkmale für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen mit Injektionsmörtel FIS SB

Anhang C 5

8.06.01-348/17

Tabelle C6.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer Ankerstangen
	RG M im hammergebohrten oder diamantgebohrten Bohrloch in Verbindung
	mit Mörtelpatrone RSB; ungerissener oder gerissener Beton

 Ankerst:	ange RG M			M8	M10	M12	M16	M20	M24	M30
	iertes Versagen durc	h Herai	ısziehen ı					20		11100
	durchmesser	d	[mm]	8	10	12	16	20	24	30
	sener Beton	<u> </u>	[]		1.0	<u> </u>				
	eristische Verbundtr	agfähig	keit im un	gerisser	nen Betor	C20/25				
	bohren mit Standard-						sowie wa	ssergefüll	tes Bohrlo	och)
	I: 24 °C / 40 °C			12	13	13	13	13	12	10
Tempe-	II: 50 °C / 80 °C			12	12	12	13	13	12	10
atur- pereich	III: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	10	11	11	11	11	11	9,0
<i>i</i> ereich	IV: 90 °C / 150 °C			10	10	10	11	10	10	8,0
Diamantl	bohren (trockener ode	r nasser	Beton so					1		0,0
	I: 24 °C / 40 °C			13	13	14	14	14	13	11
Гетре-	II: 50 °C / 80 °C			12	13	13	14	13	13	10
atur-	III: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	11	12	12	12	12	11	9,5
pereich	IV: 90 °C / 150 °C			10	11	11	11	11	10	8,5
lontage	ebeiwerte			10	''	''	11	11	10	0,3
	er oder nasser Beton		[-]				1,0			
	efülltes Bohrloch	γ inst	[-]	1	,2		1,0	1,0		
	ner Beton		[]		<u>,–</u>			.,0		
Charakt	eristische Verbundtr	agfähig	keit im ge	rissener	Beton C	20/25				
- Hammer	bohren mit Standard-	oder Ho	hlbohrer (t	rockener	oder nass	ser Beton	sowie wa	ssergefüll	tes Bohrlo	och)
	I: 24 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5
Tempe-	II: 50 °C / 80 °C			6,0	6,5	7,5	7,5	7,5	7,5	7,0
atur- bereich	III: 72 °C / 120 °C	TRk,cr	[N/mm ²]	5,5	6,0	6,5	6,5	6,5	6,5	6,0
,0101011	IV: 90 °C / 150 °C			5,0	5,5	6,0	6,0	6,0	6,0	5,5
Diamantl	bohren (trockener ode	r nasser	Beton so	· ·		· ·				,
	I: 24 °C / 40 °C						7,5	7,5	7,5	7,5
Гетре-	II: 50 °C / 80 °C						7,5	7,5	7,5	7,0
atur-	III: 72 °C / 120 °C	TRk,cr	[N/mm ²]				6,5	6,5	6,5	6,5
bereich III: 72 °C / 120 °C / 150 °C / 150 °C							6,0	6,0	6,0	6,0
							0,0	1 0,0	1 0,0	0,0
lontage	3DEIWELIE						1,0			
Montage Frockene	er oder nasser Beton		[-]				1.17			

fischer Superbond

Leistung

Leistungsmerkmale für die Zugtragfähigkeit von fischer Ankerstangen RG M mit Mörtelpatrone RSB

Anhang C 6

Tabelle C7.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer Innengewinde-
	ankern RG MI im hammergebohrten Bohrloch in Verbindung mit Injektions-
	mörtel FIS SB; ungerissener oder gerissener Beton

Innenge	wind	eanker RG MI			М8	M10	M12	M16	M20	
Kombini	ertes	s Versagen durc	h Herau	ısziehen ι	ınd Betonau	sbruch	_	<u> </u>	_	
Hülsendı	ırchn	nesser	d	[mm]	12	16	18	22	28	
Ungeris	sene	r Beton					•			
Charakte	eristi	sche Verbundtr	agfähig	keit im un	gerissenen	Beton C20/2	5			
<u>Hammer</u>	bohre	en mit Standard-	oder Ho	hlbohrer (t	rockener ode	r nasser Beto	on)			
	I:	24 °C / 40 °C			12	12	11	11	9,5	
Tempe-	II:	50 °C / 80 °C	_	[N1/mm2]	12	11	11	10	9,0	
ratur- bereich	III:	72 °C / 120 °C	TRk,ucr	₹Rk,ucr	[N/mm²]	11	10	10	9,0	8,0
	IV:	90 °C / 150 °C			10	9,5	9,0	8,5	7,5	
Montage	beiw	verte				•	•	1	•	
Trockene	er ode	er nasser Beton	γinst	[-]			1,0			
Gerisser	ner B	eton								
Charakte	eristi	sche Verbundtr	agfähig	keit im ge	rissenen Be	ton C20/25				
<u>Hammer</u>	bohre	en mit Standard-	oder Ho	<u>hlbohrer (t</u>	<u>rockener ode</u>	<u>er nasser Beto</u>	<u>on)</u>			
	l:	24 °C / 40 °C					5,0			
Tempe-	II:	50 °C / 80 °C		[N/mm ²]			5,0			
ratur- bereich	III:	72 °C / 120 °C	TRk,cr	[[N/]]]			4,5			
	IV:	90 °C / 150 °C					4,0			
Montage	beiw	verte								
Trockene	er ode	er nasser Beton	γinst	[-]			1,0			

Leistung

Leistungsmerkmale für die Zugtragfähigkeit von fischer Innengewindeankern RG MI mit Injektionsmörtel FIS SB

Anhang C 7

Tabelle C8.1: Leistungsmerkmale für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten Bohrloch in Verbindung mit Mörtelpatrone RSB; ungerissener oder gerissener Beton

	verbindu	ng mit	wortelpa		B; ungeriss		gerisser	ier Beton		
	windeanker RG MI			M8	M10	M12	M16	M20		
Kombini	iertes Versagen durc	h Herau	ısziehen ι	ınd Betonaı	usbruch					
Hülsendı	urchmesser	d	[mm]	12	16	18	22	28		
Ungeris	sener Beton									
	eristische Verbundtra									
<u>Hammer</u>	bohren mit Standard- o	oder Hol	hlbohrer (t	rockener ode	er nasser Beto	n sowie wass	sergefülltes	Bohrloch)		
	I: 24 °C / 40 °C			12	12	11	11	9,5		
Tempe-	II: 50 °C / 80 °C		[N]/ma ma 2]	12	11	11	10	9,0		
ratur- bereich	III: 72 °C / 120 °C	₹Rk,ucr	[N/mm²]	11	10	10	9,0	8,0		
	IV: 90 °C / 150 °C			10	9,5	9,0	8,5	7,5		
Diamantl	bohren (trockener ode	r nasser	Beton sov	wie wasserge	efülltes Bohrlo	<u>ch)</u>	•	•		
	I: 24 °C / 40 °C			13	12	12	11	10		
Tempe-			[N1/ 27	13	12	12	11	9,5		
ratur- bereich	III: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm²]	11	11	10	9,5	8,5		
	IV: 90 °C / 150 °C			10	10	9,5	9,0	8,0		
Montage	ebeiwerte		1		l	l				
Trockene	er oder nasser Beton		[-]			1,0				
Wasserg	efülltes Bohrloch	γinst	[-]	1,2		1	,0			
Gerissei	ner Beton									
Charakte	eristische Verbundtra	agfähig	keit im ge	rissenen Be	eton C20/25					
<u>Hammer</u>	<u>bohren mit Standard- (</u>	oder Hol	hlbohrer (t	rockener ode	<u>er nasser Beto</u>	n sowie wass	sergefülltes	Bohrloch)		
	I: 24 °C / 40 °C			5,0						
Tempe- ratur-	II: 50 °C / 80 °C		 [N/mm²]	5,0						
bereich	III: 72 °C / 120 °C	TRk,cr	[[N/]]]	4,5						
	IV: 90 °C / 150 °C			4,0						
<u>Diamantl</u>	bohren (trockener ode	r nasser	Beton sov	wie wasserge	efülltes Bohrlo	<u>ch)</u>				
	I: 24 °C / 40 °C	·					,0			
Tempe-	II: 50 °C / 80 °C				F.0					
ratur- bereich	III: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm²]			4	,5			
20,01011	IV: 90 °C / 150 °C						,0			
Montage	ebeiwerte		1		1					
	er oder nasser Beton		[-]			1,0				
Wasserg	efülltes Bohrloch	γinst	[-]	1,2		•	,0			
fische	r Superbond		[-J]	1,2		1		J		
Leistur Leistun	•	ıgtragfäl	nigkeit von	fischer Inne	engewindeanke	ern RG MI mi		hang C		

Tabelle	e C9	.1: Leistungs										e ep.	
		ungeriss					_	11111	Jekuo	1131110	i (Ci i i	J JD,	
Stabnen	ndur	chmesser		ф	8	10	12	14	16	20	25	28	32
Kombini	ertes	s Versagen durc	h Herau	ısziehen ı	ınd Be	tonaus	bruch	_	-	-	-	_	
Stabdurc	hme	sser	d	[mm]	8	10	12	14	16	20	25	28	32
Ungeris	sene	r Beton											
Charakte	eristi	sche Verbundtra	agfähigl	keit im un	geriss	enen B	eton C	20/25					
<u>Hammer</u>	bohre	en mit Standard- o	oder Hob	<u>ılbohrer (t</u>	rocken	er oder	nasser	Beton)	T				
	l:	24 °C / 40 °C			8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
Tempe-	II:	50 °C / 80 °C		[N 1/ 27	8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
ratur- bereich	III:	72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
	IV:	90 °C / 150 °C			6,5	7,0	7,0	7,5	7,5	8,0	7,5	7,0	6,0
Montage	beiw	verte											
Trockene	er ode	er nasser Beton	γinst	[-]					1,0				
Gerisser	ner B	eton											
Charakte	eristi	sche Verbundtra	agfähigl	keit im ge	rissen	en Beto	on C20/	25					
<u>Hammer</u>	bohre	en mit Standard- o	oder Hob	<u>nlbohrer (t</u>	rocken	<u>er oder</u>	<u>nasser</u>	Beton)	I		,		
	l:	24 °C / 40 °C			4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
Tempe- ratur-	II:	50 °C / 80 °C	~	[N/mm ²]	4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
bereich	III:	72 °C / 120 °C	TRk,cr	[[14/11111-]	4,0	5,0	5,0	5,0	6,0	5,5	5,5	5,5	5,5
	IV:	90 °C / 150 °C			3,5	4,5	4,5	4,5	5,5	5,0	5,0	5,0	5,0
Montage	beiw	verte											
Trockene	er ode	er nasser Beton	γinst	[-]					1,0				

fischer Superbond	
Leistung Leistungsmerkmale für die Zugtragfähigkeit von Betonstahl mit Injektionsmörtel FIS SB	Anhang C 9

Tabelle C10.1: Leistungsmerkmale für die Zugtragfähigkeit von fischer Bewehrungsanker FRA im hammergebohrten Bohrloch in Verbindung mit Injektionsmörtel FIS SB; ungerissener oder gerissener Beton

		FI3 3B, t	ungens	Sellel U	der gerissen	ier beton		
fischer E	3ewe	hrungsanker FF	RA		M12	M16	M20	M24
Kombini	ertes	Versagen durc	h Herau	sziehen u	ınd Betonausbr	uch		
Stabdurd	hmes	sser	d	[mm]	12	16	20	25
Ungeris	sene	r Beton						
Charakte	eristi	sche Verbundtr	agfähigk	eit im un	gerissenen Bet	on C20/25		
<u>Hammer</u>	oohre	en mit Standard- o	oder Hoh	lbohrer (tr	<u>rockener oder na</u>	asser Beton)		T
	l:	24 °C / 40 °C			9,0	9,5	10	9,5
Tempe- ratur-	II:	50 °C / 80 °C	_	[N/mm²]	9,0	9,5	9,5	9,0
bereich	III:	72 °C / 120 °C	τ _{Rk,ucr}		8,0	8,5	8,5	8,0
	IV:	90 °C / 150 °C			7,0	7,5	8,0	7,5
Montage	beiw	erte						
Trockene	er ode	er nasser Beton	γinst	[-]		1	,0	
Gerisser	ner B	eton						
Charakte	eristi	sche Verbundtr	agfähigk	eit im gei	rissenen Beton	C20/25		
<u>Hammer</u>	oohre	en mit Standard-	<u>oder Hol</u>	<u>lbohrer (tı</u>	<u>rockener oder na</u>	asser Beton)		
	<u>l:</u>	24 °C / 40 °C			6,0	7,0	6,0	6,0
Tempe-	II:	50 °C / 80 °C		[NI/mm21	5,5	6,5	6,0	6,0
ratur- bereich	III:	72 °C / 120 °C	TRk,cr	[N/mm ²]	5,0	6,0	5,5	5,5
	IV:	90 °C / 150 °C			4,5	5,5	5,0	5,0
Montage	beiw	verte						
Trockene	er ode	er nasser Beton	γinst	[-]		1,	,0	

fische	er Su _l	perbond
--------	--------------------	---------

Leistung

Leistungsmerkmale für die Zugtragfähigkeit von fischer Bewehrungsankern FRA mit Injektionsmörtel FIS SB

Anhang C 10

Ankersta	inge	M8	M10	M12	M16	M20	M24	M27	M30					
Verschie	erschiebungs-Faktoren für Zuglast¹)													
Ungeriss	ener oder ger	issener Be	ton; Temp	eraturbere	ich I, II, III, I	V								
δ _{N0-Faktor}	[mm/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,12	0,13					
δ _{N∞-Faktor}	[[[[[[]]]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19					
Verschie	bungs-Faktor	en für Que	rlast ²⁾											
Ungeriss	ener oder ger	issener Be	ton; Temp	eraturbere	ich I, II, III, I	V								
δv0-Faktor	[0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05					
δV∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07					

1) Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}} \end{split}$$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

2) Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$ $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C11.2: Verschiebungen für fischer Innengewindeanker RG MI

Innenge RG MI	windeanker	M8	M10	M12	M16	M20						
Verschiebungs-Faktoren für Zuglast¹)												
Ungeris	Ungerissener oder gerissener Beton; Temperaturbereich I, II, III, IV											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19						
δ _{N∞-Faktor}	[[[]]]]	0,13	0,15	0,15	0,17	0,19						
Verschie	bungs-Faktor	en für Querlast ²⁾	-	-								
Ungerise	sener oder ger	issener Beton; To	emperaturbereich	ı I, II, III, IV								
δvo-Faktor	[mm/kN]]	0,12	0,09	0,08	0,07	0,05						
δv∞-Faktor	[mm/kN]	0,18	0,14	0,12	0,10	0,08						

1) Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}} \end{split}$$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{V0}} &= \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}} \\ \delta_{\text{V}\infty} &= \delta_{\text{V}\infty\text{-Faktor}} \cdot V_{\text{Ed}} \end{split}$$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fice	hor	Sun	orh	and
HSC	rier	\sim 110	ern	oria

Leistung

Verschiebungen für Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 11

Stabnenn- durchmes	Ф.	8	10	12	14	16	20	25	28	32	
Verschieb	ungs-Faktor	en für Zu	glast¹)		-		-	-			
Ungerisse	ner oder ger	issener B	eton; Ten	nperaturb	ereich I, I	I, III, IV					
δ _{N0-Fackor}	mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13	
δ _{N∞-Faktor} [ι	11111/(14/111111-)]	0,11	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20	
Verschieb	ungs-Faktor	en für Qu	erlast ²⁾								
Ungerisse	ner oder ger	issener B	eton; Ten	nperaturb	ereich I, I	I, III, IV					
δv0-Faktor	[mm/lcN]]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05	
δV∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06	
1) Berechi	nung der effel	ktiven Ver	schiebung		²⁾ Ber	echnung c	ler effektiv	en Versch	iebung:		
$\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$ $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$											

Tabelle C12.2: Verschiebungen für fischer Bewehrungsanker FRA

fischer E anker FF	Bewehrungs- RA	M12	M16	M20	M24									
Verschie	erschiebungs-Faktoren für Zuglast¹)													
Ungeris	ngerissener oder gerissener Beton; Temperaturbereich I, II, III, IV													
δ N0-Faktor	[mm/(N/mm²)]	0,09	0,10	0,11	0,12									
δN∞-Faktor	[[[]]]]	0,13 0,15		0,16	0,18									
Verschie	bungs-Faktor	en für Querlast ²⁾	-	-										
Ungeris	sener oder ger	issener Beton; Temp	eraturbereich I, II, III,	IV										
δv0-Faktor	[mm/kN]]	0,12	0,09	0,07	0,06									
δv∞-Faktor	[mm/kN]	0,18	0,14	0,11	0,09									

1) Berechnung der effektiven Verschiebung: 2

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}} \end{split}$$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Bemessungswert der

einwirkenden Zugspannung)

 $(\tau_{\text{Ed}} : Bemessungswert der einwirkenden Zugspannung)$

²⁾ Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{V0}} &= \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}} \\ \delta_{\text{V}\infty} &= \delta_{\text{V}\infty\text{-Faktor}} \cdot V_{\text{Ed}} \end{split}$$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der

einwirkenden Querkraft)

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Superbond

Leistung

Verschiebungen für Betonstahl und fischer Bewehrungsanker FRA

Anhang C 12

Tabelle C13.1: Leistungsmerkmale²⁾ für die Stahltragfähigkeit unter Zug- und Querzugbelastung von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

Mate	281 449 281 393 449
fischer Ankerstangen und Standard-Gewindestangen, Leistungskategorie C1	449 281 393
5.9 10 20(27) 42 70 122 177 220	449 281 393
Stahl verzinkt 5.8 19 29(27) 43 79 123 177 230 25 25 25 25 25 25 25 2	449 281 393
Stahl A4 und Stah	281 393
Festigkeits- 50 klasse [kN] 19 29 43 79 123 177 230	393
To be Stahl A4 und	
26 41 59 110 172 247 322 Hochkorrosions-	449
beständiger Stahl C 80 30 47 68 126 196 282 368	•
fischer Ankerstangen und Standard-Gewindestangen, Leistungskategorie C2	
5.8 39 72 108 177	
Stahl verzinkt Stah	
Festigkeits- 50 klasse Folklasse Festigkeits- 39 72 108 177	
Stahl A4 und Hochkorrosions-	
beständiger Stahl C 80 61 116 173 282	
Querzugtragfähigkeit, Stahlversagen ohne Hebelarm ¹⁾	
fischer Ankerstangen, Leistungskategorie C1	
5.8 9 15(13) 21 39 61 89 115	141
8.8 15 23(21) 34 63 98 141 184	225
Nichtrostender Festigkeits- 50 [kN] 9 15 21 39 61 89 115 15 15 15 15 15 15	141
Stahl verzinkt Stah	197
beständiger Stahl C 80 15 23 34 63 98 141 184	225
Standard-Gewindestangen, Leistungskategorie C1	
5.8 6 11(9) 15 27 43 62 81	99
8.8 11 16(14) 24 44 69 99 129	158
Stahl verzinkt Stahl verzinkt Stahl	99
Stahl A4 und Hochkorrosions- Description Stahl C To Stahl A4 und File File	138
beständiger Stahl C 80 11 16 24 44 69 99 129	158
fischer Ankerstangen und Standard-Gewindestangen, Leistungskategorie C2	
5.8 14 27 43 62 5.8 Stahl verzinkt	
Nichtrostender Festigkeits- 50 klasse [-] 14 27 43 62	
Stahl verzinkt Stah	
5 beständiger Stahl C 80 22 44 69 99	

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C14.2; für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Superbond

Leistung

Leistungsmerkmale für die Stahltragfähigkeiten von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 13

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C14.1: Leistungsmerkmale für die S	Stahltragfähigkeit unter Zug- und Querzug-
belastung von Betonstahl ((B500B) für die seismische Leistungskategorie C1

Delastarig V	On Detons	Laiii	(D30	יו נשט	i die s	CISIIII	SCITE L	.cistui	igskai	egone	, C I	
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28	32	
Zugtragfähigkeit, Stahlversagen ¹⁾												
Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1												
Charakteristischer Widerstand NRk,s,eq,C1 [kN] 28 44 63 85 111 173 270 339											443	
Querzugtragfähigkeit, Stahlver	sagen ohne l	lebe	elarm¹)									
Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1												
Charakteristischer Widerstand	V ⁰ Rk,s,eq,C1	[kN]	10	15	22	30	39	61	95	119	155	

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 siehe Tabelle C14.2

Tabelle C14.2: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen und Betonstahl (B500B) für die seismische Leistungskategorie C1 oder C2

Anke	r- / Gewindestange				М8	M10	M12	2 M	16 N	120	M24	M27	M30	
Stabr	enndurchmesser			ф	8	10	12	14	16	20	25	28	32	
Zugtr	agfähigkeit, Stahlve	rsagen ¹⁾												
	Stahl verzinkt		5.8						1,50					
sits- s,N			8.8						1,50					
erhe rt ץм	Nichtrostender	Festigkeits- klasse	50	гп					2,86					
Teilsicherheits beiwert _{YMs,N}	Stahl A4 und Hochkorrosions-		70	[-]	1,502) / 1,87									
Teil P	beständiger Stahl C		80		1,60									
	Betonstahl	B5	00B		1,40									
Querz	zugtragfähigkeit, Sta	ahlversager	լ1)											
	Stahl verzinkt		5.8		1,25									
eits- s,v		Festigkeits-	8.8		1,25									
erhe rt ⅓M	Nichtrostender	50	r 1					2,38						
Teilsicherheits beiwert ‱,v	Stahl A4 und Hochkorrosions-	70	[-]				1,	25 ²⁾ / 1,	56					
Teil	beständiger Stahl C		80	1,33										
	Betonstahl	B5	00B						1,50					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Superbond

Leistung

Leistungsmerkmale der Stahltragfähigkeiten von Betonstahl unter seismischer Einwirkung (Leistungskat. C1) sowie Teilsicherheitsbeiwerte (Leistungskat. C1 / C2)

Anhang C 14

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl C, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

Tabelle C15.1: Leistungsmerkmale für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen im hammergebohrten Bohrloch mit Injektionsmörtel FIS SB oder Mörtelpatrone RSB für die seismische Leistungskategorie C1

	Rategorie	. 01									
Gew	indestange			М8	M10	M12	M16	M20	M24	M271)	M30
eristi	sche Verbundtr	agfähigl	ceit, komb	oinierte	s Versaç	gen durc	h Herau	ıszieher	und Be	etonaus	oruch
					sätzlich	im was:	sergefül	liten Bol	nrloch)		
l:	24 °C / 40 °C			4,6	5,0	5,6	5,6	5,6	5,6	5,6	6,4
II:	50 °C / 80 °C	_	[N/mm²] -	4,3	4,6	5,6	5,6	5,6	5,6	5,3	6,0
III:	72 °C / 120 °C	≀Rk,eq,C1		3,9	4,3	4,9	4,9	4,9	4,9	4,5	5,1
IV:	90 °C / 150 °C	-		3,6	3,9	4,5	4,5	4,5	4,5	4,1	4,7
beiw	erte										
ähig	keit										
r ode	er nasser Beton		r 1				1	,0			
efüllte	es Bohrloch	γinst	[-]	1,2 2) 1,0 2)							
tragf	ähigkeit										
aube	dingungen	γinst	[-]				1	,0		·	
	eristii bohr er od l: ll: lV: lV: pode ähig r ode efüllt	Gewindestange ristische Verbundtr bohren mit Standard	bohren mit Standard- oder Her oder nasser Beton; Mörte I: 24 °C / 40 °C II: 50 °C / 80 °C III: 72 °C / 120 °C IV: 90 °C / 150 °C beiwerte ähigkeit r oder nasser Beton efülltes Bohrloch tragfähigkeit	Gewindestange ristische Verbundtragfähigkeit, koml bohren mit Standard- oder Hohlbohre er oder nasser Beton; Mörtelpatrone 1: 24 °C / 40 °C II: 50 °C / 80 °C III: 72 °C / 120 °C IV: 90 °C / 150 °C beiwerte ähigkeit r oder nasser Beton efülltes Bohrloch tragfähigkeit	Gewindestange Pristische Verbundtragfähigkeit, kombinierte bohren mit Standard- oder Hohlbohrer er oder nasser Beton; Mörtelpatrone RSB zu 1: 24 °C / 40 °C	Gewindestange ristische Verbundtragfähigkeit, kombiniertes Versagbohren mit Standard- oder Hohlbohrer er oder nasser Beton; Mörtelpatrone RSB zusätzlich 24 °C / 40 °C	M8 M10 M12 M12 M15 M15	M8 M10 M12 M16 M16 M15 M15	M8 M10 M12 M16 M20 M15 M16 M20 M16 M16 M20 M16 M16 M16 M20 M16 M16	M8 M10 M12 M16 M20 M24	M8 M10 M12 M16 M20 M24 M27¹¹) Pristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonauslich bohren mit Standard- oder Hohlbohrer er oder nasser Beton; Mörtelpatrone RSB zusätzlich im wassergefüllten Bohrloch) I: 24 °C / 40 °C

¹⁾ Nur für Injektionsmörtel FIS SB

Tabelle C15.2: Leistungsmerkmale für die Tragfähigkeit von Betonstahl im hammergebohrten Bohrloch mit Injektionmörtel FIS SB für die seismische Leistungskategorie C1

Stabnen	ndur	chmesser		ф	8	10	12	14	16	20	25	28	32		
Charakte	Charakteristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch														
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)														
	l:	24 °C / 40 °C	_		3,2	4,3	4,5	4,5	5,3	4,5	4,5	4,5	5,1		
Tempe-	II:	50 °C / 80 °C		[N/mm²]	3,2	3,9	4,1	4,1	4,9	4,5	4,5	4,5	5,1		
ratur- bereich	III:	72 °C / 120 °C	TRk,eq,C1		2,8	3,6	3,8	3,8	4,5	4,1	4,1	4,1	4,7		
	IV:	90 °C / 150 °C			2,5	3,2	3,4	3,4	4,1	3,8	3,8	3,8	4,3		
Montage	beiw	verte													
Zugtragt	Zugtragfähigkeit														
Trockene	Trockener oder nasser Beton γ _{inst} [-] 1,0														
Querzug	tragi	lähigkeit											·		
Querzug	uagi	anigken		T											

fischer Superbond

Alle Einbaubedingungen

Leistung

Leistungsmerkmale der Tragfähigkeiten unter seismischer Einwirkung (Leistungskat. C1) für fischer Ankerstangen, Standard-Gewindestangen und Betonstahl

γinst

Anhang C 15

1,0

²⁾ Wassergefülltes Bohrloch nur in Verbindung mit Mörtelpatrone RSB zulässig.

Tabelle C16.1: Leistungsmerkmale für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen im hammergebohrten Bohrloch mit Injektionsmörtel FIS SB für die seismische Leistungskategorie C2

						ı				
Anker- /	Gew	indestange			M12	M16	M20	M24		
Charakt	eristi	sche Verbundti	agfähigl	keit, kom	oiniertes Versag	gen durch Herau	ısziehen und Be	etonausbruch		
Hamme	rbohr	en mit Standar	d- oder H	lohlbohre	er (trockener od	er nasser Betor	1)			
	l:	24 °C / 40 °C			4,5	3,2	2,6	3,0		
Tempe-	II:	50 °C / 80 °C	_	[N]/mm21	4,5	3,2	2,6	3,0		
ratur- bereich	III:	72 °C / 120 °C	TRk,eq,C2	[N/mm²]	3,9	2,7	2,3	2,6		
IV		90 °C / 150 °C	•		3,6	2,5	2,1	2,4		
Montage	ebeiw	verte								
Zugtrag	fähig	keit								
Trocken	er ode	er nasser Beton	γinst	[-]		1	,0			
Querzuç	gtragí	fähigkeit								
Alle Einb	aube	dingungen	γinst	[-]	1,0					
Verschi	ebun	gen unter Zugla	ist¹)							
δN,(DLS)-Fa	ktor		[1/ 2\1	0,09	0,10	0,11	0,12		
δN,(ULS)-Fa	ktor		[mm/(r	N/mm²)]	0,15	0,17	0,17	0,18		
Verschi	ebung	gen unter Quer	ast²)							
δv,(DLS)-Faktor [mm/kN]				5/LNI	0,18 0,10 0,07			0,06		
δv,(ULS)-Fa	δ V,(ULS)-Faktor			I/KIN]	0,25	0,25 0,14 0,11				

1) Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{N,(DLS)}} &= \delta_{\text{N,(DLS)-Faktor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N,(ULS)}} &= \delta_{\text{N,(ULS)-Faktor}} \cdot \tau_{\text{Ed}} \\ (\tau_{\text{Ed}} : Bemessungswert der \\ \text{einwirkenden Zugspannung)} \end{split}$$

²⁾ Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{V,(DLS)}} &= \delta_{\text{V,(DLS)-Faktor}} \cdot V_{\text{Ed}} \\ \delta_{\text{V,(ULS)}} &= \delta_{\text{V,(ULS)-Faktor}} \cdot V_{\text{Ed}} \\ (V_{\text{Ed}}: Bemessungswert der einwirkenden Querkraft) \end{split}$$

fischer Superbond

Leistung

Leistungsmerkmale der Tragfähigkeiten unter seismischer Einwirkung (Leistungskat. C2) für fischer Ankerstangen und Standard-Gewindestangen

Anhang C 16